Science Assessment
and Analysis

Climate science is highly complex and the policy implications are not always clear. We make the latest climate science easily accessible for stakeholders in the international climate change arena.

 ©Sarah Depper, CC BY 2.0
©Sarah Depper, CC BY 2.0

We synthesise and advance scientific knowledge in the area of climate change science, policy and impacts to make it easily accessible for stakeholders in the international climate change arena. This includes conducting our own research (for example, to evaluate the uncertainties in climate science associated with potential mitigation pathways, project sea-level rise or evaluate impacts and risks at different levels of warming) as well as bringing together and communicating the findings of the available scientific literature and providing the context needed to understand their implications. Projections of future climate change are subject to uncertainty, as they depend on a range of developments that cannot be foreseen (e.g. emission pathways). Also, there remain important limitations in the understanding and the modeling of some key processes of the climate system. Much of our work therefore focused on understanding these key process and the probabilities associated with climate impact projections.

Latest

COP23 briefing - Limiting warming to 1.5°C is of paramount importance to protect the oceans. This briefing provides an overview of the latest science on key risks for ocean systems including from sea- level rise, ocean acidification and impacts on coral reefs and other marine and coastal ecosystems.  
We can only limit sea level rise to around half a meter by 2100 if cumulative carbon emissions stay below 850 gigatonnes and coal is nearly phased out by 2050. If emissions continue unchecked, oceans could rise 55 per cent more than previously thought – by around 130cm in 2100, according to a paper published in Environmental Research Letters today.  
Coastal cities around the world could be devastated by 1.3m of sea level rise this century unless coal-generated electricity is virtually eliminated by 2050, according to a new paper that combines the latest understanding of Antarctica’s contribution to sea level rise and the latest emissions projection scenarios.  
Climate change could lead to sea level rises that are larger, and happen more rapidly, than previously thought, according to a trio of new studies that reflect mounting concerns about the stability of polar ice. In one case, the research suggests that previous high end projections for sea level rise by the year 2100 — a little over three feet — could be too low, substituting numbers as high as six feet at the extreme if the world continues to burn large volumes of fossil fuels throughout the century.  
The Paris climate conference set the ambitious goal of finding ways to limit global warming to 1.5C, rather than the previous threshold of 2C. But what would be the difference? And how realistic is such a target? Article quoting research by Climate Analytics' Michiel Schaeffer and Carl-Friedrich Schleussner.  

Publications

This paper incorporates latest findings on Antarctic ice sheet dynamics into new sea level rise modelling, and pairs it with the new generation of scenarios – Shared Socioeconomic Pathways (SSPs) and compares them with outcomes for the previous generation of scenarios - Representative Concentration Pathways (RCPs), used in the last IPCC Assessment (AR5). It finds that without any mitigation, sea levels could rise by an average of 132 cm in 2100 relative to the 1986-2005 mean.  
This article is a first comprehensive assessment of key climate impacts for the policy relevant warming levels of 1.5 °C and 2 °C above pre-industrial levels. It finds substantial impact differences in intensity and frequency of extreme weather events, regional water availability and agricultural yields, sea-level rise and risk of coral reef loss. The increase in climate impacts is particularly pronounced in tropical and sub-tropical regions.  

Projects

Science and policy to assist and support SIDSs and LDCs to negotiate a strong international climate regime, enabling low carbon development and supporting adaptation needs.