Probabilistic climate projections

Many characteristics of the climate system are uncertain, but decent estimates of uncertainty ranges can be made, based on observations and modelling exercises. Based on collaborations with our research partners, our climate projections make use of this information to produce probabilistic climate projections (as opposed to just “best-estimate” projections), which helps designing strategies for mitigating future climate change and adapting to such changes under uncertainty.

Publications

Solar radiation modification (SRM), is presented by some as an option that may help to limit global temperature rise. However, SRM cannot address the root causes of anthropogenic climate change – the continued emissions of greenhouse gases. Investing precious time and resources in this critical decade to explore SRM technologies distracts from the urgent need to step up mitigation efforts to halve emissions by 2030.  
This fourth and final ZERO IN report looks at how cutting emissions this decade can limit temperature rise and other climate impacts in the near-term. It looks back to what was set out by governments in the Glasgow Climate Pact and unpacks what “enhanced mitigation ambition …. in this critical decade” must look like, based on the latest IPCC science.  
This study extends the framework of an existing spatially resolved, annual-scale Earth system model (ESM) emulator (MESMER) by a monthly downscaling module (MESMER-M), thus providing local monthly temperatures from local yearly temperatures. MESMER-M is able to statistically generate ESM-like, large initial-condition ensembles of spatially explicit monthly temperature fields, providing monthly temperature probability distributions which are of critical value to impact assessments.  
The contributions of single greenhouse gas emitters to country-level climate change are generally not disentangled, despite their relevance for climate policy and litigation. Here, we quantify the contributions of the five largest emitters (China, US, EU-27, India, and Russia) to projected 2030 country-level warming and extreme hot years with respect to pre-industrial climate using an innovative suite of Earth System Model emulators.  
The annual ZERO IN reports by the CONSTRAIN project provide information on scientific topics that are fundamental to the Paris Agreement, as well as background and context on new developments at the science-policy interface. This includes new insights into the complex processes represented in climate models and what they mean for temperature change and other climate impacts over the coming decades. This third report provides additional context and background on the latest IPCC report on the physical science basis of climate change (IPCC AR6 WGI), and addresses important questions around how likely we are to reach 1.5°C of global temperature increase.  

Projects

The EU-funded project addresses crucial knowledge gaps in climate science to improve our understanding of how natural and human factors affect long-term regional climate change.  
Science and policy to assist and support SIDSs and LDCs to negotiate a strong international climate regime, enabling low carbon development and supporting adaptation needs.  
The ISIpedia project is an effort to bridge a gap between the modellers from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) studying the global and regional impacts of climate change on natural and human systems, and stakeholders who may need this knowledge to identify appropriate policies. By creating channels of cooperation between modellers and stakeholders, ISIpedia aims at facilitating the co-production and knowledge transfer of climate impact information. The end-product of ISIpedia will be a user-friendly, freely accessible online encyclopaedia for consistent impacts projections across sectors.  
This project is an extension of the PAS-PNA project in Benin, Senegal and Burkina Faso. In each country, Climate Analytics, together with the national Green Climate Fund (GCF) Accredited Entity, is conducting the pre-feasibility or feasibility studies for selected adaptation projects, providing governments with an evidence-base to support the development of GCF concept notes and funding proposals.